Some inequalities for the generalized parton distribution E(x,0,t)

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Weighted Integral Inequalities for Generalized Conformable Fractional Calculus

In this paper, we have obtained weighted versions of Ostrowski, Čebysev and Grüss type inequalities for conformable fractional integrals which is given by Katugompola. By using the Katugampola definition for conformable calculus, the present study confirms previous findings and contributes additional evidence that provide the bounds for more general functions.

متن کامل

extensions of some polynomial inequalities to the polar derivative

توسیع تعدادی از نامساوی های چند جمله ای در مشتق قطبی

15 صفحه اول

Advances in Generalized Parton Distribution Study

The basic properties of generalized parton distributions (GPDs) and some recent applications of GPDs are discussed. Talk given at the Workshop “Continuous Advances in QCD 2004”, Minneapolis, May 13-16, 2004 Also at Laboratory of Theoretical Physics,JINR, Dubna, Russia

متن کامل

Some inequalities on generalized entropies

We give several inequalities on generalized entropies involving Tsallis entropies, using some inequalities obtained by improvements of Young’s inequality. We also give a generalized Han’s inequality.

متن کامل

Some numerical studies of the evolution of generalized parton distributions

We study the evolution behavior of generalized parton distributions at small longitudinal momentum fraction. Particular attention is paid to the ratio of a generalized parton distribution and its forward limit, to the mixing between quarks and gluons, and to the dependence on the squared momentum transfer t.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physics Letters B

سال: 2004

ISSN: 0370-2693

DOI: 10.1016/j.physletb.2003.12.058